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Abstract—By means of convenient domino ring closure reactions of 1-(2-aminoethyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline
2 and c-oxo-acids, 14-substituted 8,13-diazaoestrone derivatives (5 and 6) were formed with �100% diastereoselectivity.
� 2004 Elsevier Ltd. All rights reserved.
The synthesis of steroid derivatives containing hetero-
atoms in various positions of the carbocyclic skeleton
has gained wide attention in recent decades.1 In conse-
quence of their structural analogy, numerous azasteroid
derivatives have proved to exert inhibitory activity on
certain enzymes involved in the transformations of
natural steroidal compounds, for example, antifungal
azasteroids that block the ergosterol biosynthesis2 or 5a-
reductase-inhibitory azasteroids with antitestosterone
activity.3

In the course of our previous studies on the preparation
of 1,2,3,4-tetrahydroisoquinoline-condensed saturated
1,3- and 1,2,3-heterocycles,4;5 tetrahydroisoquinoline
1,2- and 1,3-diamine derivatives were prepared from
homoveratrylamine and N-protected a- or b-amino
acids.5 Diamine 2 could be obtained easily, either by
simple transformation of 3-benzyloxycarbonylamino-N-
[2-(3,4-dimethoxyphenyl)ethyl]-propanamide 1 or by
catalytic hydrogenation of 3,4-dimethoxy-1,2,3,4-tetra-
hydroisoquinolin-1-ylacetonitrile 4, obtained by cyano-
acetic acid addition to 3,4-dihydroisoquinoline 3.6;7

When compound 2 was reacted with levulinic acid or
with 3-benzoylpropanoic acid in boiling toluene, 8,13-
diazaoestrone analogue tetracycles 5a and 5b were
formed in good yields.8;9 NMR measurements indicated
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that tetracycles 5 were formed with practically full ste-
reoselectivity (de � 100%), with the relative configura-
tions depicted in Scheme 1; traces of the minor
diastereomers could not be detected, even in the crude
products. The ring closures of 2 with 2-formylbenzoic
acid and 2-benzoylbenzoic acid resulted in 8,13-diaza-
oestrone benzologue pentacycles 6a and 6b, similarly
with excellent diastereoselectivity.8;9 In contrast with the
earlier procedures for preparation of the 8,13-diaza-
steroid ring system, based on the ring closure of 1,2,3,4-
tetrahydroisoquinoline-1-acetates with lactim ethers or
reductive cyclization of 1-(2-succinylaminoethyl)-
1,2,3,4-tetrahydroisoquinolines,10 the present simple
procedure is suitable for the preparation of 14-substi-
tuted derivatives.

The 1H and 13C NMR chemical shifts were assigned
with the help of dqf-COSY, CH correlation, and CO-
LOC measurements. The syn-diaxial relationship of the
bridgehead H-9 and the 14-substituent was established
for each compound by means of NOE difference
experiments. The NOEs further revealed trans B/C ring
fusion in 5a and cis fusion in 5b, 6a, and 6b, the latter
probably driven by the steric demands from the phenyl
substituent (5b) or the fused benzene ring (6a,b).

The ring closures of diamine 2 with c-oxoacids can be
categorised as domino type reactions,11 since the for-
mation of polycycles 5 and 6 proceeds by double cycli-
zation. Domino ring closures were applied earlier for the
preparation of various azasteroid derivatives.12 The
formation of 5 and 6 are the first examples of the syn-
theses of 8,13-diazasteroid systems via such reactions.
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Scheme 1. Reagents and conditions: (i) see Ref. 5b; (ii) see Ref. 6; (iii) H2, Raney-Ni, NH3, MeOH, 50 �C, 50 atm, 6 h, 71%; (iv) R1CO(CH2)2COOH,

toluene, D, 1–2 h, 70–74%; (v) R2COC6H4COOH, toluene, D, 1–4 h, 61–65%.

N
MeO

MeO

N

O

H R1N
MeO

MeO

N

O

H R1

N
MeO

MeO

NH

H R1

COOH

NH
MeO

MeO

N

H

7A

7B

85

k1 k2

N
MeO

MeO

NH

H R1

COOH

7C

R1

COOH2

Scheme 2.

6200 L. L�az�ar et al. / Tetrahedron Letters 45 (2004) 6199–6201
The cyclic intermediates (e.g., 7) in the formation of 5
and 6 possess a ring-chain tautomeric character (Scheme
2), the second ring closure of which shifts the tautomeric
equilibrium. The high diastereoselectivity (5� 8) of the
overall process can be explained as a result of the kinetic
control (k1 � k2) governing the second cyclization
step.13 Similar domino reactions of N-unsubstituted
aminoalcohols or diamines and the corresponding c- or
d-oxoacids often proceed with considerable stereoselec-
tivity and are widely used for the preparation of nitro-
gen-bridged bicyclic lactams.14

The above results demonstrate that the domino ring
closures of tetrahydroisoquinoline diamines with c-oxo
acids comprise a convenient route for synthesis of the
8,13-diazasteroid ring system. Further investigations on
the scope and limitations of this reaction, including the
effects of the substituents and the ring size, are in pro-
gress.
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H-12x), 3.75 (s, 3H, OCH3), 3.85 (s, 3H, OCH3), 4.09 (dd,
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